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The communication describes the finite algebra for perception of rings in molecules. It is de­
monstrated that for an arbitrary spaning tree we may construct the so-called restricted set of rings, 
which is composed of all possible (dependent and/or independent) rings that are classified by mak­
ing use of some required constrains as "chemically important". The method makes possible the 
formulation of efficient algorithms how to exhaustive perceive the rings in molecules. 

The perception of rings is an essential part of any computer program for simulation of organic 
synthesis. It represents the necessary first step in the perception of the chemical nature of the 
molecular structure, the prediction of its chemical behavior. The presence of rings in a molecular 
structure is a restriction of chemical reactivity of functional groups within the molecule, reactivity 
toward common reagents may be substantially altered. 

The total number of "independent" rings (this term is fully specified in forthcoming sections) 
of a connected undirected graph G composed of N vertices and M edges is specified by the so-cal­
led cyclomatic number l c(G) = M - N + 1. A set of c independent rings will be called the 
fundamental set of rings. We have a large freedom in construction of this set, therefore it is 
very worthwhile to introduce further restrictions specifying more deeply the set of rings. For 
instance, one can require that the set of rings is formed of smallest rings. From such a set of rings 
we can determine the total ring strain energy, aromaticity, topology, and most importantly, 
the set of synthetically important rings. The ring-perception problems have been studied by many 
authors2 -12. 

The purpose of the present communication is to algebraize the problem of percep­
tion of rings by making use of some special kind of finite algebra o"er the scalar 
field of modulo 2. This very interesting possibility was initially mentioned by Corey 
and Peterson3, now the algebraic approach is used as a powerful formal device 
to formulate many important concepts and notions in ring-perception problem. 

Basic Concepts of Graph Representation of Molecules 

A molecular structural formula may be unambiguously expressed13 as a multigraph 
with loops (i.e. pseudo-multigraph), its vertices are evaluated by atomic symbols. 

.. Part V in the series Mathematical Model of Organic Chemistry; Part IV: This Journal 49, 
1090 (1984). 
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Such general representation of molecules is unnecessarily complex for the present 
purposes, therefore we use another simpler alternative graph-theory way how to de­
termine abstractly the molecular structural formula. Let G = (V, E) be the mole­
cular graph assigned to a molecule, where V = {Vt' v2 , ••• , vN} is the finite non-empty 
set of vertices (atoms) and E = ret, e2, ... , eM} is the finite set of edges (bonds) 
which are represented by unordered pairs of vertices from V, the bond ep = (Vi' Vi) 

is said to be incident with the vertices Vi and vi' diagrammatically this is represented 
by a continuous line connecting the vertices Vi and vi' In order to get a full corres­
pondence between the concept of molecular graph and the molecular structural 
formula, the vertices and edges of G should be evaluated by symbols specifying 
more deeply their chemical nature (type of atoms, multiplicity of bonds, etc.). A sim­
ple walk of n steps on the molecular graph G is an alternative sequence of n edges 
and n + 1 vertices (for n ~ 1), each vertex (except the first and last) is incident 
with the preceding and with the succeeding edge, no vertex and no edge occurs 
(or is visited) more than once. A ring is closed walk where the initial and terminal 
vertices coincide. The size of ring is equal to the number of its edges. A spanning 
subgraph ~f the molecular graph G is a graph obtained from G by deleting a subset 
of its edges (which may be empty set) but retaining all the vertices of G. A tree (con­
taining n edges) is a connected graph which contains no rings, clearly this three has 
n + 1 vertices. A spanning tree T of the molecular graph G is a tree which is the 
spanning subgraph of G, T = (v, E' £; E). A ring-closure edge (determined with res­
pect to the spanning tree T) is an edge which was deleted from E in forming the 
spanning tree Tfrom the graph G. The total number of ring-closure edges is determined 
mined by the so-called cyclomatic number l 

c( G) = M - N + 1 , (1) 

this number is an invariant of the graph G and does not depend on the particular 
form of the given spanning tree. The total number of independent rings that can be 
constructed over the graph G is equal to the number of ring-closure edges, i.e. to the 
cyclomatic number (1). The number of all possible rings constructed over the graphG 
may be much more higher than the cyclomatic number (1), but among these rings 
there are such ones that can be expressed as a combination of other rings. There­
fore, we introduce a notion of the fundamental set of rings of c independent rings, 
then all other rings can be expressed as their combinations. 

Construction of the Fundamental Set of Rings 

The initial step in the construction of fundamental set of rings is the generation 
of a spanning tree. An arbitrary vertex of the studied molecular graph G may be fixed 
as the root of the construct red tree. The tree is organized hierarchicallyt2, going 
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from the top to bottom, the root (the fixed vertex) is placed on O-level, on the next 
level (I-level) are placed all the vertices with unit distance from the root, on the next 
2-level we place all the vertices with unit distance from vertices placed on the higher 
I-level and with the distance equal 2 from the top vertex (root) placed on O-Ievel, 
and similarly for the remaining vertices. The vertices placed on the juxtaposed 
levels are connected by edges belonging to the set E, in particular, each vertex from 
n-level is linked merely by one edge starting at the higher (n -I)-level, see Fig. 1. 
The vertices with longest distance from the top root are placed on the bottom level, 
they are linked only with the vertices from the next higher level. The tree is com­
posed of N vertices (by definition), and as a result of its connectivity, it contains N-1 
edges. The total number of edges in the graph G is M, then the number of ring-clo­
sure edges (the edges which were not included at the tree) is equal to M - N + 1 
[cf. Eq. (1)]. Now, let us have an arbitrary ring-closure edge, applying a back tracing 
to higher levels in the direction to the root, we start to find other edges of a ring 
corresponding to the given ring-closure edge. This process is accomplished when 
it was found that the given two branches of tree are joined together at a common 
vertex, see diagram D in Fig. 1. The similar back-tracing procedure is repeated for all 
ring-closure edges. Hence, we have constructed the fundamental set of rings, 
{RI' R 2 , ••• , Rc}, its individual components are subsets of the set E, i.e. Ri <;; E 

for i = 1,2, ... , c. For illustration, the spanning trees of the graph in Fig .. I are 
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FIG. 1 

Illustrative example of the graph G = (V, E). 
The diagrams A and B present the labeling 
of G by vertex and edge symbols, respectively. 
The diagram C is the spanning tree Til',) 
of G, the dashed lines are the ring-closure 
edges. Finally, the diagram D represents 
the construction of the ring R2 assigned 
to the ring-closure edge es 
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schematically drawn in Fig. 2, the corresponding ring-closure edges and fundamen­
tal sets of rings are listed in Table I. Since the rings from a fundamental set are uni­
quely classified by different ring-closure edges, we may say, formally, that these 

TABLE I 

Spanning trees 

Root of spanning 
tree 

Vt 
v2 

v3 
v4 

Vs 
v6 

v7 

r~.~7/ 

<III v, 

A B 

E 

FIG. 2 

~ -------- -- - ----

Ring-closure Fundamental set 
edges of rings 

e7, e8' e9 {R I • R 2• R 3} 

es' e6' es {R I • R 3, R 4 } 

e4 , e6' eq {R I • Rz, R4} 

e4' eSt e7 {Rz' R 3, R4} 

ez, e3' es {Rt, R 3, R4} 

el,e3,e9 {R I • R z, R4 } 

eJ' e2' e, {Rz' R3, R4 } 

--~--. 

,es e4 

v2 
v, 

C D 

e9 "7 

~, 

F G 

All possible spanning trees that can be constructed over the graph G determined in Fig. I, 
diagrams A and B. The heavy dot denotes the root of spanning tree. The oriented bold-face­
lines correspond to the edges included into the given spanning tree, while the thin lines are the 
ring-closure edges. The orientation of bold-face lines was introduced to facilitate the presentation 
of hierarchically constructed spanning trees 
----~------------------------------
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rings are independent. New rings are formed from rings belonging to a fundamental 
set by making use of the so-called disjoint union2 •3 (or symmetric difference l 4, 
these operations are closely related with the operation "sum" recently used in our 
communication about the reaction graphslS). Let Rand R' be two sets, then their 
disjoint union is determined by 

REB R' = {e; either e E R or e E R', but not in both} . (2) 

The rings that can be formed over the graph specified in Fig. 1 are presented in Fig. 3. 
their "interconversions" according to the binary operation EB are listed in Table II. 
Unfortunately, the disjoint union of rings would produce new "rings" which are 
not satisfying the ring definition. Let us assume that Rand R' are two disjoint rings, 
R n R' = 0, then R EB R' forms a set of edges which is simple union of Rand R', 
i.e. for Rn R' = 0 we get R EB R' = R u R'. This new set REB R' does not cor­
respond to a ring, it contains two rings that may be classified as 

1) fully isolated, if Rand R' have no a common vertex (see first row in Fig. 4), or 

2) spiro, connected via a common vertex, if Rand R' share a common vertex 
(see second row in Fig. 4). 

Hence, we have to be very careful in applying the disjoint-union operation over the 
fundamental set of rings, for a pair of disjoint rings the obtained result R EB R' 
should not a ring. 

R, 

FIo.3 

All possible rings constructed over the graph G determined in Fig. 1, diagrams A and B. The 
corresponding rings are visualized by bold-face lines 
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Finite Algebra of Rings 

Let us have a setofscalarsZ = {O,I} (integers modulo 2), over the set Z we define 
an unary operation" -" (the complement) and two binary operations "$" and "*,, 
(the sum and multiplication, respectively), see Table III. The set Z is closed under 
these operations and forms a field of scalars16 , we say that Z is scalar field modulo 2. 
Now, let us introduce the cartesian product ZM = Z X Z x Z x ... x Z of M 
components, its elements may be formally treated as M-tuples (called the vectors) 
r = (tXl' tX2, ... , tXM), where tXl tX2' .... tXM E Z. This means that the cartesian product 
ZM is composed of all possible M-tuples, ZM = {(tXI' tX2, ... , tXM)}, the number of 

TABLE II 

Multiplication table of rings 

0 Rl R2 R3 R4 Rs R6 R7 

0 0 RI R2 R3 R4 Rs R6 R7 
RI RI 0 Rs R6 R7 R2 R3 R4 
R2 R2 Rs 0 R7 R6 RI R4 R3 
R3 R3 R6 R7 0 Rs R4 RI R2 
R4 R4 R7 R6 Rs 0 R3 R2 RI 
Rs Rs R2 RI R4 R3 0 R7 R6 
R6 R6 R3 R4 Rl R2 R7 0 Rs 
R7 R7 R4 R3 R2 Rl R6 Rs 0 

(XX) (+1 (XX) = (XX) 
R R' R c+'R' 

DC) (+) CO = 

R R' Rc+. R' 

FIG. 4 

Two illustrative examples of isolated and spiro rings, respectively. that can be produced when 
the "sum" operation is applied for a pair of dhjoint rings 
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all its distinct elements is 2M. Let us have two vectors r = (CLI' CLz, ... , CLM) and 
$ = (PI' P2' ... , PM)' we define the following three operations over the ZM and the 
so-called zero vector. 

1) the sum of two vectors rand $, 

(3a) 

2) the multiplication of a scalar CL E Z with a vector r, 

(3b) 

3) the complement to a vector r, 

(3c) 
4) the zero vector 

o = (0, 0, ... , 0) . (3d) 

The cartesian product ZM is closed under the operations (3a - c) and contains the zero 
vector O. Hence, the cartesian product ZM can be formally treated as a vector space over 
the scalar field Z. The size Irl of a vector r = (CL I, CL2' ... , CLM) is determined as the 
number of unit elements at its corresponding M-tuple. Obviously, the notion of size 
forms the metric of ZM, i.e. Irl ~ 0 for an arbitrary r, Irl = 0 only for r = 0, and 
jr E!3 r'l ~ Irl + Ir'l (the so-called triangular inequivalency). 

Now, we turn our attention to the connection l7 of the above introduced finite 
algebraic theory with our previous considerations about the rings of a molecular 
graph G = (v, E). Let R be a subset of E, R ~ E, its characteristic function is 

TABLE III 

Algebraic operations 

IX 

0 
0 

(e)={O for ertR, 
XR 1 for e E R . (4) 

P - a.E!3P a.*P IX 

0 0 0 
1 1 0 
0 0 0 

0 0 
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Then the subset R is unambiguously determined as the following M-tuple of zero 
and unit entries, 

(5) 

an M-tuple containing only zero entries corresponds to the empty subset of E. For 
example, the rings listed in Fig. 3 are described by these M-tuples 

RI +-+ r l = (1, 1,0,1,1,0,1,0,0), 

R2 +-+ r 2 = (0, 1, 1,0, 1, 1,0, 1,0) , 

R3 +-+ r3 = (1,0, 1, 1,0, 1,0,0, 1) , 

R4 +-+ r 4 = (0,0,0,0,0,0,1,1,1), 

Rs +-+ rs = (1,0,1,1,0,1,1,1,0), 

R6 +-+ r 6 = (0, 1, 1, 0, 1, 1, 1, 0, 1) , 

R7 +-+ r7 = (1,1,0,1,1,0,0,1,1). 

The disjoint union of two rings Rand R' (their vector representation is rand r') 
is realized as follows 

R ElY R' +-+ r ElY r' . (6) 

This can be simply verified for the above rings RI to R7 , using the production Table II, 
we get 

etc. 

RI E9 R2 = Rs +-+ rs = r l E9 r 2 , 

RI ElY R3 = R6 +-+ r6 = r l ElY r J , 

A set of vectors {rl' r2 , ••• , r.} is linearly independent if the relation 

is satisfied only for zero coefficients lXI' 1X2' ••• , IXc E Z, in the opposite case the vectors 
are linearly dependent. In the previous section we have vaguely stated that the rings 
of fundamental set are independent, now we have available the algebraic device 
how to fill this notion. Let R = {RI' R 2 , ••• , Rc} be the fundamental set of rings, 
its algebraic counterpart is aset of associated c vectors {rl' r2 , ... , rc}' We say that the 
rings of R are independent only if the vectors r l , r 2 , ... , rc are linearly independent, 
in the opposite case the rings are not independent. By using these relatively simple 
algebraic tools we shall prove that the rings forming the fundamental set are inde­
pendent. Let us assume that we have constructed for the graphG = (v, E) a spanning 
tree T(v), where v E Vis the root. The corresponding ring-closure edges are indexed 
by el , e2' ... , ec, a ring assigned to an edge ej is then denoted by R j (for i = 1,2, , .. , c) 
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Then the associated vectors '1' '2' ",,'c have the following form 

'1 = (1,0, ",,0, x, "" x) , 

'2 = (0,1, .. ,,1, x, .. ,' x) , 

rc = 0,0, .. " 1, x, .. " x), 

Kvasnicka, Banki : 

where the last M - c entries are symbolically expressed by x = 0, 1. Obviously, these 
vectors are linearly independent, which immediately implies that the elements 
of an arbitrary fundamental set of rings, constructed with respect to an arbitrary 
sp3nning tree T(v), are independent. 

For our forthcoming considerations it will be of great importance to know how 
m3ny distinct (linearly dependent and independent) vectors can be constructed 
by linear combinations of the vectors {'I' r2 , "" rc} [the algebraic counterpart 
of the fundamental set of rings constructed with respect to a spanning tree T(v)]' 
Since in the framework of the present finite algebra the following lemma is satisfied: 
r EEl r' =I r EE> r" implies r' =I r", a pair of different linear combinations of vectors 
produces the different vectors, Generalizing this property, a linear combination 
IXI * r lEE> .. , EE> IXc * rc =, determines uniquely the resulting vector r, Hence, 
we may simply enumerate all distinct vectors that are induced by the set {rI' r 2 , ." 

.'" rc}, we get 

(8) 

where (;) is the binomial coefficient n!jrn!(n - rn)!, the term (~) is the number 

of all different combinations of i vectors from the set {rj' r2> .. " rc}, and (~) cor­

responds to the zero vector 0, Summarizing, for a preselected spanning tree T(v) 
with c ring-closure edges, the corresponding set of vectors is composed of c linearly 
independent vectors, and moreover, this set induces a c-dimensional space UT(v) ~ ZM 

which contains 2c different vectors, 

Let us consider two spaces UT(v) and UT(v') that are constructed with respect 
to different spanning trees T(v) and T(v'), respectively, where v =I v' and v, v' E V, 
We have proved that both these spaces are c-dimensional and are composed of 2" 
different vectors, The spaces UT(v) and UT(v') are induced by the sets of linearly 
independent vectors {rI' '2' .. " rc} and {,~, r;, .. " ,;} assigned to the fundamental 
sets of rings R = {RI' R2 , .. " R.} and R' = {R;, R;, .. " R;}, respectively, In ac­
cordance with the determination of spanning tree, any ring that can be constructed 
over the molecular graph G should be (i) immediately contained at a fundamental 
set of rings related to an arbitrary spanning tree, or (ii) expressed as a combination 
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(disjoint-union operation) of rings belonging to the fundamental set. Consequently, 
an arbitrary vector r; E {r~, r;, ... , r~} is unambiguously determined as the linear 
combination of vectors from {rIo r 2 , ••• , rc}, 

(9) 

Hence, the spaces UT(v) and UT(v') induced by different sets of vectors {rl' r2 , .... rc} 
d { " '1. . I 'd' I an r l , r2 , ••• , rcJ ' respectIve y, are I entIca 

(10) 

for any pair of spanning trees T(v) and T(v') related to different roots v =F v'. This 
principal property is of the great importance for our forthcoming considerations, 
it states that any possible spanning tree may be preselected as a starting point for 
the construction of the space U, all spanning trees give the same space U. 

Construction of a Set of Rings Satisfying Prescribed Restrictions 

Let us assume that we have constructed a fundamental set of rings R = {RI' R 2 , '" 

... , R.} relative to a spanning tree T(v). Now, we would like to construct from this 
fixed fundamental set R a new set ofrings that are satisfying some class ofrestricting 
conditions. Usually, these conditions are formulated in such a way that the resulting 
rings belong to a family of chemically important rings from the standpoint of solved 
problem. For example, a constructed set of rings is determined by requiring that their 
size is less than a threshold. 

Following the previous section, an arbitrary vector r E U is uniquely determined 
by the linear combination of vectors from the basis set {rl' r 2 , ••• , rJ, 

(11 ) 

where /31' /32' ... , /3c E Z. The right-hand side of (11) may be formally expressed 
as the following c-tuple 

(12) 

Hence the space U is composed of c-tuples (12), but now these c-tuples must be 
related to the fixed set of vectors {r1' r2, ... , rc}' The set of restricted vectors, U resl" is 
formally determined as follows 

UreSlr = {r; r E U and per)} ~ U. (13) 

It means that the set U reslr is composed of those vectors r E U for which the state­
ment per) (restricting conditions and a check whether the vector r correspond to the 
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notion of ring or not) is true. The restricted set of rings, Rreslr' is then immediately 
c;)nstructed from the rings assigned to the vectors r E Ureslr' 

Rreslr = {R; R ~ rand r E Urestr} , (14) 

its nrdinality (number of elements) mly be, in general, different of the cardinality 
of fundamental set of rings, i.e. I Rreolrl =1= I RI = c. If I Rrestrl = I RI = c and the set 
Rrestr is composed of independent rings, then R r• str is called the restricted funda­
mental set of rings. 

SUMMARY 

The algebraic theory outlined at the previous sections belongs among standard 
topics of algebraically oriented graph-theory textbooks17• We believe that its con­
sequent application to the problem of perception of rings in molecule offers very 
effective possibilities how to exhaustive preceive and enumerate aU the possible 
rings that are satisfying some cIass of restricting conditions. To the knowledge 
of authors, such a possibility hlS not been consequently used. Usually, the problem 
of construction of a restricted set of rings is solved by making use of a preselected 
spnning tree with an additional application of more or less ingenious heuristics, 
which mlY potentially, considerably accelerate the process of finding the rings 
that are satisfying prescribed restricting conditions. But what is slightly discouraging 
there, almost each author of such a procudere usually presents a few counter examples 
unpropedy determined by his suggested method. 
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