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The communication describes the finite algebra for perception of rings in molecules. It is de-
monstrated that for an arbitrary spaning tree we may construct the so-called restricted set of rings,
which is composed of all possible (dependent and/or independent) rings that are classified by mak-
ing use of some required constrains as ‘“‘chemically important’’. The method makes possible the
formulation of efficient algorithms how to exhaustive perceive the rings in molecules.

The perception of rings is an essential part of any computer program for simulation of organic
synthesis. It represents the necessary first step in the perception of the chemical nature of the
molecular structure, the prediction of its chemical behavior. The presence of rings in a molecular
structure is a restriction of chemical reactivity of functional groups within the molecule, reactivity
toward common reagents may be substantially altered.

The total number of “independent’ rings (this term is fully specified in forthcoming sections)
of a connected undirected graph G composed of N vertices and M edges is specified by the so-cal-
led cyclomatic number! ¢(G) = M — N + 1. A set of ¢ independent rings will be called the
fundamental set of rings. We have a large freedom in construction of this set, therefore it is
very worthwhileto introduce further restrictions specifying more deeply the set of rings. For
instance, one can require that the set of rings is formed of smallest rings. From such a set of rings
we can determine the total ring strain energy, aromaticity, topology, and most importantly,

the set of synthetically important rings. The ring-perception problems have been studied by many
authors? ~12,

The purpose of the present communication is to algebraize the problem of percep-
tion of rings by making use of some special kind of finite algebra over the scalar
field of modulo 2. This very interesting possibility was initially mentioned by Corey
and Peterson®, now the algebraic approach is used as a powerful formal device
to formulate many important concepts and notions in ring-perception problem.

Basic Concepts of Graph Representation of Molecules

A molecular structural formula may be unambiguously expressed!?® as a multigraph
with loops (i.e. pseudo-multigraph), its vertices are evaluated by atomic symbols.

* Part V in the series Mathematical Model of Organic Chemistry; Part 1V: This Journal 49,

1090 (1984).
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Perception of Rings in Molecules 1099

Such general representation of molecules is unnecessarily complex for the present
purposes, therefore we use another simpler alternative graph-theory way how to de-
termine abstractly the molecular structural formula. Let G = (V, E) be the mole-
cular graph assigned to a molecule, where V = {vl, Vyy ven vN} is the finite non-empty
set of vertices (atoms) and E = {e,, e, ..., ey} is the finite set of edges (bonds)
which are represented by unordered pairs of vertices from ¥, the bond e, = (v, v;)
is said to be incident with the vertices v; and v;, diagrammatically this is represented
by a continuous line connecting the vertices v; and v;. In order to get a full corres-
pondence between the concept of molecular graph and the molecular structural
formula, the vertices and edges of G should be evaluated by symbols specifying
more deeply their chemical nature (type of atoms, multiplicity of bonds, etc.). A sim-
ple walk of n steps on the molecular graph G is an alternative sequence of n edges
and n + 1 vertices (for n = 1), each vertex (except the first and last) is incident
with the preceding and with the succeeding edge, no vertex and no edge occurs
(or is visited) more than once. A ring is closed walk where the initial and terminal
vertices coincide. The size of ring is equal to the number of its edges. A spanning
subgraph of the molecular graph G is a graph obtained from G by deleting a subset
of its edges (which may be empty set) but retaining all the vertices of G. A tree (con-
taining n edges) is a connected graph which contains no rings, clearly this three has
n + 1 vertices. A spanning tree T of the molecular graph G is a tree which is the
spanning subgraph of G, T = (V, E' = E). A ring-closure edge (determined with res-
pect to the spanning tree T) is an edge which was deleted from E in forming the
spanningtree Tfrom the graph G. The total number of ring-closure edges is determined
mined by the so-called cyclomatic number!

(G)=M—N+1, (1)

this number is an invariant of the graph G and does not depend on the particular
form of the given spanning tree. The total number of independent rings that can be
constructed over the graph G is equal to the number of ring-closure edges, i.e. to the
cyclomatic number (1).The number of all possible rings constructed over the graphG
may be much more higher than the cyclomatic number (1), but among these rings
there are such ones that can be expressed as a combination of other rings. There-
fore, we introduce a notion of the fundamental set of rings of ¢ independent rings,
then all other rings can be expressed as their combinations.

Construction of the Fundamental Set of Rings

The initial step in the construction of fundamental set of rings is the generation
of a spanning tree. An arbitrary vertex of the studied molecular graph G may be fixed
as the root of the constructred tree. The tree is organized hierarchically'?, going
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from the top to bottom, the root (the fixed vertex) is placed on 0-level, on the next
level (1-level) are placed all the vertices with unit distance from the root, on the next
2-level we place all the vertices with unit distance from vertices placed on the higher
1-level and with the distance equal 2 from the top vertex (root) placed on 0-level,
and similarly for the remaining vertices. The vertices placed on the juxtaposed
Jevels are connected by edges belonging to the set E, in particular, each vertex from
n-level is linked merely by one edge starting at the higher (n—1)-level, see Fig. 1.
The vertices with longest distance from the top root are placed on the bottom level,
they are linked only with the vertices from the next higher level. The tree is com-
posed of N vertices (by definition),and asaresult of its connectivity, it contains N—1
edges. The total number of edges in the graph G is M, then the number of ring-clo-~
sure edges (the edges which were not included at the tree) is equal to M — N + 1
[¢f. Eq. (I)]. Now, let us have an arbitrary ring-closure edge, applying a back tracing
to higher levels in the direction to the root, we start to find other edges of a ring
corresponding to the given ring-closure edge. This process is accomplished when
it was found that the given two branches of tree are joined together at a common
vertex, see diagram D in Fig. 1. The similar back-tracing procedure is repeated for all
ring-closure edges. Hence, we have constructed the fundamental set of rings,
IRy, Rys vty RC}, its individual components are subsets of the set E, i.e. R; € E
for i = 1,2,..., c. For illustration, the spanning trees of the graph in Fig. | are

Fig. 1

Illustrative example of the graph G = (V, E).
The diagrams A and B present the labeling
of G by vertex and edge symbols, respectively.
The diagram C is the spanning tree T'(r,)
of G, the dashed lines are the ring-closure
edges. Finally, the diagram D represents
the construction of the ring R, assigned
to the ring-closure edge eg

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]
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schematically drawn in Fig. 2, the corresponding ring-closure edges and fundamen-
tal sets of rings are listed in Table I. Since the rings from a fundamental set are uni-
quely classified by different ring-closure edges, we may say, formally, that these

TABLE I

Spanning trees

Root of spanning  Ring-closure Fundamental set

tree edges of rings

vy eq, €g, €g {Ry. Ry, Ry}
vy €s, €6, €g {R1~R3v R4}
U3 €45 6> €9 {Rl- R3, R4}
vy €4, €s, €7 {Ry, Ry, Ry}
vs €, €3, €g {Ry. Ry, Ry}
Vs €1, €3, €9 {RI'RZ' R4}
vy €, €3, €7 {Ry. Ry, Ry}

%
v.
P 2
.
v
Vg 7
eg ez
@2 e,
ey e,
E F G

Fi1G. 2
All possible spanning trees that can be constructed over the graph G determined in Fig. 1,
diagrams A and B. The heavy dot denotes the root of spanning tree. The oriented bold-face-
lines correspond to the edges included into the given spanning tree, while the thin lines are the
ring-closure edges. The orientation of bold-face lines was introduced to facilitate the presentation
of hierarchically constructed spanning trees
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rings are independent. New rings are formed from rings belonging to a fundamental
set by making use of the so-called disjoint union®* (or symmetric difference'®,
these operations are closely related with the operation “‘sum” recently used in our
communication about the reaction graphs'®). Let R and R’ be two sets, then their
disjoint union is determined by

R @ R’ = {e; either ee R or e€ R, but notin both} . (2)

The rings that can be formed over the graph specified in Fig. 1 are presented in Fig. 3,
their ““interconversions’ according to the binary operation @ are listed in Table II.
Unfortunately, the disjoint union of rings would produce new ‘‘rings” which are
not satisfying the ring definition. Let us assume that R and R’ are two disjointrings,
RN R =0, then R @ R’ forms a set of edges which is simple union of R and R’,
i.e. for RN R =0 we get R@® R’ = Ru R’. This new set R @ R’ does not cor-
respond to a ring, it contains two rings that may be classified as

1) fully isolated, if R and R’ have no a common vertex (see first row in Fig. 4), or

2) spiro, connected via a common vertex, if R and R’ share a common vertex
(see second row in Fig. 4).
Hence, we have to be very careful in applying the disjoint-union operation over the
fundamental set of rings, for a pair of disjoint rings the obtained result R @ R’
should not a ring.

R

Rs Ry, R,
Fi1G. 3

All possible rings constructed over the graph G determined in Fig. 1, diagrams A and B. The
corresponding rings are visualized by bold-face lines
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Finite Algebra of Rings

Let us have a setofscalars Z = {0,1} (integers modulo 2), over the set Z we define
an unary operation *“—” (the complement) and two binary operations “@” and ““*”
(the sum and multiplication, respectively), see Table III. The set Z is closed under
these operations and forms a field of scalars'®, we say that Z is scalar field modulo 2.
Now, let us introduce the cartesian product ZM = Z x Z x Z x ... x Z of M
components, its elements may be formally treated as M-tuples (called the vectors)
r = (x4, oy, ..., ay), Where a; a,, ....ay € Z. This means that the cartesian product
ZM is composed of all possible M-tuples, ZM = {(«,, a,, ..., ay)}, the number of

TABLE II
Multiplication table of rings

R R’ R# R’

FiG. 4

Two illustrative examples of isolated and spiro rings, respectively, that can be produced when
the ‘“sum” operation is applied for a pair of disjoint rings
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all its distinct elements is 2M. Let us have two vectors r = (al, Aoy ey aM) and
s = (B, By .- Bu), We define the following three operations over the ZM and the
so-called zero vector.

1) the sum of two vectors r and s,
r@s=(a @B a2 ® By -0y o D Bu) » (3a)
2) the multiplication of a scalar a € Z with a vector r,
ax o= (o ko, O %oy, ..., X0y, (3b)
3) the complement to a vector r,

F = (&1, &2, . eey &M) N (3C)
4) the zero vector
0=(0,0,...,0). (3d)

The cartesian product ZMis closed under the operations (3a —c) and contains the zero
vector 0. Hence, the cartesian product ZM can be formally treated as a vector space over
the scalar field Z. The size lr] of a vector r = («y, a,, ..., ay) is determined as the
number of unit elements at its corresponding M-tuple. Obviously, the notion of size
forms the metric of ZM, i.e. |r| 2 0 for an arbitrary r, |r| = 0 only for r = 0, and
|r @ r| < |r| + |r| (the so-called triangular inequivalency).

Now, we turn our attention to the connection!” of the above introduced finite
algebraic theory with our previous considerations about the rings of a molecular
graph G = (V, E) Let R be a subset of E, R < E, its characteristic function is

0 for e¢R,
wO-{  fR @

TaBLE III
Algebraic operations

_-—-0 o
-0 = o
S O
)
~c oo
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Then the subset R is unambiguously determined as the following M-tuple of zero
and unit entries,

R & (xr(e1), xr(e2), ---» xr(em)) (%)

an M-tuple containing only zero entries corresponds to the empty subset of E. For
example, the rings listed in Fig. 3 are described by these M-tuples

R, e r, =(1,1,0,1,1,0,1,0,0),
R,or,=(0,1,1,0,1,1,0,1,0),
Ryery=(1,0,1,1,0,1,0,0,1),
Ry r, =(0,0,0,0,0,0,1,1,1),
Rs+ers=(1,0,1,1,0,1,1,1,0),
Rgerg=(0,1,1,0,1,1,1,0,1),
R,er,=(1,1,0,1,1,0,0,1,1).

The disjoint union of two rings R and R’ (their vector representation is r and r)
is realized as follows

ROPR &ordr'. (6)

This can be simply verified for the above rings R; to R4, using the production Table II,
we get
Ri®R; =Rseors=r @r,,

Ri®R3; =Rsers=r,@r;,
etc.
A set of vectors {ri, [ SRR rc} islinearly independent if the relation

0, *r, Do, *r, ®... Do *xr. =0

is satisfied only for zero coefficients a,, a5, ..., &, € Z, in the opposite case the vectors
are linearly dependent. In the previous section we have vaguely stated that the rings
of fundamental set are independent, now we have available the algebraic device
how to fill this notion. Let R = {Ry, R,, ..., R.} be the fundamental set of rings,
its algebraic counterpart s a set of associated ¢ vectors {ry, r,, ..., r.}. We say that the
rings of R are independent only if the vectors ry, r,, ..., r. are linearly independent,
in the opposite case the rings are not independent. By using these relatively simple
algebraic tools we shall prove that the rings forming the fundamental set are inde-
pendent. Let us assume that we have constructed for the graphG = (¥, E) a spanning
tree T(v), where v € V is the root. The corresponding ring-closure edges are indexed
by e,, e,, ..., &, aring assigned to an edge e; is then denoted by R; (fori = 1,2, ..., ¢)
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Then the associated vectors rq, r,, ..., r. have the following form

ry=(1,0,...,0,x,...,x),
r,=(0,1,...,1,x,...,x),

re=0,0,....1,x,...x),

where the last M — c entries are symbolically expressed by x = 0, 1. Obviously, these
vectors are linearly independent, which immediately implies that the elements
of an arbitrary fundamental set of rings, constructed with respect to an arbitrary
spanning tree T(v), are independent.

For our forthcoming considerations it will be of great importance to know how
many distinct (linearly dependent and independent) vectors can be constructed
by linear combinations of the vectors {r,, r,,...,r;} [the algebraic counterpart
of the fundamental set of rings constructed with respect to a spanning tree T(v)].
Since in the framework of the present finite algebra the following lemma is satisfied:
r@dr #r®r" implies r' # r”, a pair of different linear combinations of vectors
produces the different vectors. Generalizing this property, a linear combination
o, *xr @ ... a *xr, =r determines uniquely the resulting vector r. Hence,
we may simply enumerate all distinct vectors that are induced by the set {r,, r,, ...

. Te}, we get
(6)+()+() =+ () -~ 0

n\ . . . . c\.

where (m) is the binomial coefficient n!/m!(n — m)!, the term (i is the number
. . . ¢
of all different combinations of i vectors from the set {r,, ry, ..., rc}, and <0> cor-
responds to the zero vector 0. Summarizing, for a preselected spanning tree T(u)
with ¢ ring-closure edges, the corresponding set of vectors is composed of ¢ linearly
independent vectors, and moreover, this set induces a c-dimensional space Uz,, S ZM
which contains 2° different vectors.

Let us consider two spaces Ur,, and Uq that are constructed with respect
to different spanning trees T(v) and T(v'), respectively, where v % v’ and v, v' e V.
We have proved that both these spaces are c-dimensional and are composed of 2¢
different vectors. The spaces Uy, and Uy, are induced by the sets of linearly
independent vectors {ry, r,,...,r.} and {r, ry, ..., r.} assigned to the fundamental
sets of rings R = {Ry, R,,...,R.} and R" = {R}, R}, ..., R}, respectively. In ac-
cordance with the determination of spanning tree, any ring that can be constructed
over the molecular graph G should be (i) immediately contained at a fundamental
set of rings related to an arbitrary spanning tree, or (ii) expressed as a combination
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(disjoint-union operation) of rings belonging to the fundamental set. Consequently,
an arbitrary vector rje{r}, rj, ..., r.} is unambiguously determined as the linear
combination of vectors from {ry, r,, ..., 1.},

Fl=oa, *r @o,*r, ... @ o *r,. 9)

Hence, the spaces Uy,, and Uy, induced by different sets of vectors {ry, r,, ..., r.}
and {ry, rj, ..., r.}, respectively, are identical

Urw = Urpy (10)

for any pair of spanning trees T(v) and T(v') related to different roots v # v'. This
principal property is of the great importance for our forthcoming considerations,
it states that any possible spanning tree may be preselected as a starting point for
the construction of the space U, all spanning trees give the same space U.

Construction of a Set of Rings Satisfying Prescribed Restrictions

Let us assume that we have constructed a fundamental set of rings R = {R;, R,. ...
..., R} relative to a spanning tree T(v). Now, we would like to construct from this
fixed fundamental set R a new set of rings that are satisfying some class of restricting
conditions. Usually, these conditions are formulated in such a way that the resulting
rings belong to a family of chemically important rings from the standpoint of solved
problem. For example, a constructed set of rings is determined by requiring that their
size is less than a threshold.

Following the previous section, an arbitrary vector r € U is uniquely determined
by the linear combination of vectors from the basis set {rl, ry, ... rc},

P=Bixr @Brxr, @ ... ® B xr., (11)

where By, B, ..., B. € Z. The right-hand side of (11) may be formally expressed
as the following c-tuple

r=1[B B2 - B] - . S (12)

Hence the space U is composed of c-tuples (12), but now these c-tuples must be
related to the fixed set of vectors {r,, r, ..., r.}. The set of restricted vectors, U, ., is
formally determined as follows '

U = {r;reUand P(r)} = U. o (13)

It means that the set U,.,,, is composed of those vectors r € U for which the state-
ment P(r) (restricting conditions and a check whether the vector r correspond to the
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notion of ring or not) is true. The restricted set of rings, R, is then immediately
constructed from the rings assigned to the vectors r € U,,,

R = {R;ReorandreU.,}, (14)

its cardinality (number of elemsznts) may be, in general, different of the cardinality
of fundamental set of rings, i.e. |R.y | # |R| = c. If |R.s] = |R| = ¢ and the set
R, is composed of indepzndent rings, then R, is called the restricted funda-
mental set of rings.

SUMMARY

The algebraic theory outlined at the previous sections belongs among standard
topics of algebraically oriented graph-theory textbooks!”. We believe that its con-
sequznt application to the problem of perception of rings in molecule offers very
effective possibilities how to exhaustive preceive and enumerate all the possible
rings that are satisfying soms class of restricting conditions. To the knowledge
of authors, such a possibility has not bezn consequently used. Usually, the problem
of construction of a restricted set of rings is solved by making use of a preselected
spanning tree with an additional application of more or less ingenious heuristics,
which may potentially, considerably accelerate the process of finding the rings
that are satisfying prescribed restricting conditions. But what is slightly discouraging
there, almost each author of such aprocudere usually presents a few counter examples
unproperly determined by his suggested method.
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